This tutorial is part of a Collection: 03. DirectX 11 - Braynzar Soft Tutorials
rate up
1
rate down
7731
views
bookmark
17. Point Lights

This lesson will build right off the last lesson. We will learn how to make a simple point light, which takes the position of the first cube and rotates around the second (center) cube.

1065 downloads
##Introduction## Here is a fairly short lesson which will teach you how to impliment a point light. Point lights are a step up from directional lights, meaning they take a little more to compute, and add a lot more realism to a scene. ##Point Light Factors## There are a couple more values we need to declare when creating a point light. We need to define its position, its range, and something called attenuation. ##Position## This will be represented by a 3d vector called pos in our code, where the first value is the x axis, second value is the y axis and third value the z axis. Although pointlights do not have a direction like directional lights and spotlights, since they shoot out light in every possible direction, they must have a position. ##Range## Range will be represented by a float value called range in our code. The light from a pointlight does not continue forever like directional lights. Because of this, we must give a "range", where any pixels or objects outside this range will not be "lit up" by the light from a pointlight. ##Attenuation## This will be represented by a 3D vector called att in our code, where the three values will be called att0, att1, and att2 respectively. This will need a little more explaining than the other two. Attenuation, which could also be called "Falloff Factor", is used to control how the intensity of light changes, or decreases as the distance from the light source increases. The Attenuation is be computed like this: Attenuation = att0 + (att1 * d) + (att2 * d²) Where d is the distance between the light source and the pixel. Now I will explain each of these attenuation factors in a little more detail **att0** - *The Constant Modifier* As this value is not multiplied by anything, it is called a "Constant Modifier", which means that this value will not change as the distance from the light source to the pixel changes. This value is used to give a minimum amount of light to everything within range of the light source. If you were to set this value to "1.0f", then everything inside the range of the light source would have full color, or full light. **att1** - *The Linear Modifier* You can see this value is multiplied by the distance between the light source and the pixel, or by d in the equation. That makes this value a "Linear Modifier", which means this will gradually decrease the amount of light a pixel gets as the distance between the pixel and light source increase. This is probably the most realistic factor. **att2** - *The Exponential Modifier* This value is multiplied by the square of d, which makes this value an "Exponential Modifier". Using this value will give objects that are very close to the light source a lot of light, but as they move away, the light they recieve RAPIDLY decreases in a small distance, then slowly decreases as you get further away. ##Point Light Equation## It is not an actual equation, but more like a series of steps and equations to impliment the point light correctly. Pixel Direction From Light Position Vector First we will create a vector describing the direction the light is hitting the pixel from. We can do that like this: lightToPixelVec = light.pos - input.worldPos; In the last lesson, the Directional Lights lesson, and every lesson before that, we only needed to send the vertices position in screen space from the VS stage. However, our lights position is defined in world space, so we will need to send the vertices world space position from the VS as well as the Screen space of the vertice. In the last lesson we sent the vertices normal in world space, so you shouldn't have a problem understand sending the vertices actual position in world space to the PS. Distance Between Pixel's Position and Light's Position Now we will find the distance between the pixels position and the lights position using the vector we just created. We can then determine if this pixel is outside the lights range or not. We can find the length of a vector using an HLSL function called length(): d = length(lightToPixelVec); If d is greater than the range factor of our light, then the pixel recieves no light from our light source, and we can return the ambient value, or pitch black if thats what you want. ##Normalize the lightToPixelVec Vector## Now we need to normalize this vector to use in the next function. We can easily normalize this vector by dividing it by the distance we got from above: lightToPixelVec /= d; ##Light Intensity## Like we did in the last lesson, we must now find how intensely the light is striking the pixel's surface. If the light is striking the surface "head-on", then the surface will recieve all the light, if the light source is behind or parallel with the surface, then the surface is recieving no light. We can find this factor by multiplying the direction of the light to the pixel with the pixels normal: howMuchLight = dot(lightToPixelVec, input.normal); ##Add the Light Intensity to Pixel## First we will check to make sure howMuchLight is greater than zero, if it is, then we know the light is striking the front of the surface. Then we need to add the light intensity factor to the pixel. To do this, we will multiply the light intensity (howMuchLight) with the diffuse color of our pixel and diffuse color of our light. finalColor += howMuchLight * diffuse * light.diffuse; ##Add the Attenuation Factor## The last thing we have to do to impliment our point light correctly, is factor in our Attenuation factor. We do this by dividing our pixels color with the Attenuation factor, which determine the final amount of light the pixel gets based on how far from the light source it is. finalColor /= light.att[0] + (light.att[1] * d) + (light.att[2] * (d*d)); ##The Light Structure## As you can see, we have changed the light structure to include three new members. One for the position, one for the range, and one for the attenuation factor. struct Light { Light() { ZeroMemory(this, sizeof(Light)); } XMFLOAT3 dir; float pad1; ///////////////**************new**************//////////////////// XMFLOAT3 pos; float range; XMFLOAT3 att; float pad2; ///////////////**************new**************//////////////////// XMFLOAT4 ambient; XMFLOAT4 diffuse; }; ##Describing the Light## Here we describe our light. We set its position at 0,0,0 (this is because we will update it later), its range to 100.0f, and its attenuation's att1 to 0.2f, which will give it a constant falloff factor. light.pos = XMFLOAT3(0.0f, 0.0f, 0.0f); light.range = 100.0f; light.att = XMFLOAT3(0.0f, 0.2f, 0.0f); light.ambient = XMFLOAT4(0.3f, 0.3f, 0.3f, 1.0f); light.diffuse = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f); ##Update the Lights Position## We will have our point light take the position of our first cube, which rotates around the center cube. We can do this by first creating a new vector which will hold our first cubes position, then setting each of the x, y and z values of our lights position to the x, y, and z values of our first cubes position in world space. XMVECTOR lightVector = XMVectorSet( 0.0f, 0.0f, 0.0f, 0.0f ); lightVector = XMVector3TransformCoord(lightVector,cube1World); light.pos.x = XMVectorGetX(lightVector); light.pos.y = XMVectorGetY(lightVector); light.pos.z = XMVectorGetZ(lightVector); ##The Effect File## Here is our new HLSL light structure, which now includes a position, range and attenuation factor. struct Light { float3 dir; float3 pos; float range; float3 att; float4 ambient; float4 diffuse; }; Like we said above, we now need to pass our vertices world position, along with our vertices normals in world space from the VS. VS_OUTPUT VS(float4 inPos : POSITION, float2 inTexCoord : TEXCOORD, float3 normal : NORMAL) { VS_OUTPUT output; output.Pos = mul(inPos, WVP); output.worldPos = mul(inPos, World); output.normal = mul(normal, World); output.TexCoord = inTexCoord; return output; } Here is our new PS stage, which impliments our point light. We covered what it is doing above, so you can read above if you don't understand, and look through the comments. float4 PS(VS_OUTPUT input) : SV_TARGET { input.normal = normalize(input.normal); float4 diffuse = ObjTexture.Sample( ObjSamplerState, input.TexCoord ); float3 finalColor = float3(0.0f, 0.0f, 0.0f); //Create the vector between light position and pixels position float3 lightToPixelVec = light.pos - input.worldPos; //Find the distance between the light pos and pixel pos float d = length(lightToPixelVec); //Create the ambient light float3 finalAmbient = diffuse * light.ambient; //If pixel is too far, return pixel color with ambient light if( d > light.range ) return float4(finalAmbient, diffuse.a); //Turn lightToPixelVec into a unit length vector describing //the pixels direction from the lights position lightToPixelVec /= d; //Calculate how much light the pixel gets by the angle //in which the light strikes the pixels surface float howMuchLight = dot(lightToPixelVec, input.normal); //If light is striking the front side of the pixel if( howMuchLight > 0.0f ) { //Add light to the finalColor of the pixel finalColor += howMuchLight * diffuse * light.diffuse; //Calculate Light's Falloff factor finalColor /= light.att[0] + (light.att[1] * d) + (light.att[2] * (d*d)); } //make sure the values are between 1 and 0, and add the ambient finalColor = saturate(finalColor + finalAmbient); //Return Final Color return float4(finalColor, diffuse.a); } We now have a simple pointlight we can impliment in our scenes! Next is the Spot Light, which is like a flash light! ##Exercise:## 1. Play around with the attenuation factors to see exactly how they work! Here's the final code: main.cpp: //Include and link appropriate libraries and headers// #pragma comment(lib, "d3d11.lib") #pragma comment(lib, "d3dx11.lib") #pragma comment(lib, "d3dx10.lib") #pragma comment (lib, "D3D10_1.lib") #pragma comment (lib, "DXGI.lib") #pragma comment (lib, "D2D1.lib") #pragma comment (lib, "dwrite.lib") #include <windows.h> #include <d3d11.h> #include <d3dx11.h> #include <d3dx10.h> #include <xnamath.h> #include <D3D10_1.h> #include <DXGI.h> #include <D2D1.h> #include <sstream> #include <dwrite.h> //Global Declarations - Interfaces// IDXGISwapChain* SwapChain; ID3D11Device* d3d11Device; ID3D11DeviceContext* d3d11DevCon; ID3D11RenderTargetView* renderTargetView; ID3D11Buffer* squareIndexBuffer; ID3D11DepthStencilView* depthStencilView; ID3D11Texture2D* depthStencilBuffer; ID3D11Buffer* squareVertBuffer; ID3D11VertexShader* VS; ID3D11PixelShader* PS; ID3D10Blob* VS_Buffer; ID3D10Blob* PS_Buffer; ID3D11InputLayout* vertLayout; ID3D11Buffer* cbPerObjectBuffer; ID3D11BlendState* Transparency; ID3D11RasterizerState* CCWcullMode; ID3D11RasterizerState* CWcullMode; ID3D11ShaderResourceView* CubesTexture; ID3D11SamplerState* CubesTexSamplerState; ID3D11Buffer* cbPerFrameBuffer; ID3D11PixelShader* D2D_PS; ID3D10Blob* D2D_PS_Buffer; ID3D10Device1 *d3d101Device; IDXGIKeyedMutex *keyedMutex11; IDXGIKeyedMutex *keyedMutex10; ID2D1RenderTarget *D2DRenderTarget; ID2D1SolidColorBrush *Brush; ID3D11Texture2D *BackBuffer11; ID3D11Texture2D *sharedTex11; ID3D11Buffer *d2dVertBuffer; ID3D11Buffer *d2dIndexBuffer; ID3D11ShaderResourceView *d2dTexture; IDWriteFactory *DWriteFactory; IDWriteTextFormat *TextFormat; std::wstring printText; //Global Declarations - Others// LPCTSTR WndClassName = L"firstwindow"; HWND hwnd = NULL; HRESULT hr; const int Width = 300; const int Height = 300; XMMATRIX WVP; XMMATRIX cube1World; XMMATRIX cube2World; XMMATRIX camView; XMMATRIX camProjection; XMMATRIX d2dWorld; XMVECTOR camPosition; XMVECTOR camTarget; XMVECTOR camUp; XMMATRIX Rotation; XMMATRIX Scale; XMMATRIX Translation; float rot = 0.01f; double countsPerSecond = 0.0; __int64 CounterStart = 0; int frameCount = 0; int fps = 0; __int64 frameTimeOld = 0; double frameTime; //Function Prototypes// bool InitializeDirect3d11App(HINSTANCE hInstance); void CleanUp(); bool InitScene(); void DrawScene(); bool InitD2D_D3D101_DWrite(IDXGIAdapter1 *Adapter); void InitD2DScreenTexture(); void UpdateScene(double time); void RenderText(std::wstring text, int inInt); void StartTimer(); double GetTime(); double GetFrameTime(); bool InitializeWindow(HINSTANCE hInstance, int ShowWnd, int width, int height, bool windowed); int messageloop(); LRESULT CALLBACK WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam); //Create effects constant buffer's structure// struct cbPerObject { XMMATRIX WVP; XMMATRIX World; }; cbPerObject cbPerObj; struct Light { Light() { ZeroMemory(this, sizeof(Light)); } XMFLOAT3 dir; float pad1; ///////////////**************new**************//////////////////// XMFLOAT3 pos; float range; XMFLOAT3 att; float pad2; ///////////////**************new**************//////////////////// XMFLOAT4 ambient; XMFLOAT4 diffuse; }; Light light; struct cbPerFrame { Light light; }; cbPerFrame constbuffPerFrame; //Vertex Structure and Vertex Layout (Input Layout)// struct Vertex //Overloaded Vertex Structure { Vertex(){} Vertex(float x, float y, float z, float u, float v, float nx, float ny, float nz) : pos(x,y,z), texCoord(u, v), normal(nx, ny, nz){} XMFLOAT3 pos; XMFLOAT2 texCoord; XMFLOAT3 normal; }; D3D11_INPUT_ELEMENT_DESC layout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 20, D3D11_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = ARRAYSIZE(layout); int WINAPI WinMain(HINSTANCE hInstance, //Main windows function HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd) { if(!InitializeWindow(hInstance, nShowCmd, Width, Height, true)) { MessageBox(0, L"Window Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitializeDirect3d11App(hInstance)) //Initialize Direct3D { MessageBox(0, L"Direct3D Initialization - Failed", L"Error", MB_OK); return 0; } if(!InitScene()) //Initialize our scene { MessageBox(0, L"Scene Initialization - Failed", L"Error", MB_OK); return 0; } messageloop(); CleanUp(); return 0; } bool InitializeWindow(HINSTANCE hInstance, int ShowWnd, int width, int height, bool windowed) { typedef struct _WNDCLASS { UINT cbSize; UINT style; WNDPROC lpfnWndProc; int cbClsExtra; int cbWndExtra; HANDLE hInstance; HICON hIcon; HCURSOR hCursor; HBRUSH hbrBackground; LPCTSTR lpszMenuName; LPCTSTR lpszClassName; } WNDCLASS; WNDCLASSEX wc; wc.cbSize = sizeof(WNDCLASSEX); wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = WndProc; wc.cbClsExtra = NULL; wc.cbWndExtra = NULL; wc.hInstance = hInstance; wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); wc.hCursor = LoadCursor(NULL, IDC_ARROW); wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 2); wc.lpszMenuName = NULL; wc.lpszClassName = WndClassName; wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION); if (!RegisterClassEx(&wc)) { MessageBox(NULL, L"Error registering class", L"Error", MB_OK | MB_ICONERROR); return 1; } hwnd = CreateWindowEx( NULL, WndClassName, L"Lesson 4 - Begin Drawing", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, width, height, NULL, NULL, hInstance, NULL ); if (!hwnd) { MessageBox(NULL, L"Error creating window", L"Error", MB_OK | MB_ICONERROR); return 1; } ShowWindow(hwnd, ShowWnd); UpdateWindow(hwnd); return true; } bool InitializeDirect3d11App(HINSTANCE hInstance) { //Describe our SwapChain Buffer DXGI_MODE_DESC bufferDesc; ZeroMemory(&bufferDesc, sizeof(DXGI_MODE_DESC)); bufferDesc.Width = Width; bufferDesc.Height = Height; bufferDesc.RefreshRate.Numerator = 60; bufferDesc.RefreshRate.Denominator = 1; bufferDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; bufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED; bufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED; //Describe our SwapChain DXGI_SWAP_CHAIN_DESC swapChainDesc; ZeroMemory(&swapChainDesc, sizeof(DXGI_SWAP_CHAIN_DESC)); swapChainDesc.BufferDesc = bufferDesc; swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; swapChainDesc.BufferCount = 1; swapChainDesc.OutputWindow = hwnd; swapChainDesc.Windowed = TRUE; swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; // Create DXGI factory to enumerate adapters/////////////////////////////////////////////////////////////////////////// IDXGIFactory1 *DXGIFactory; HRESULT hr = CreateDXGIFactory1(__uuidof(IDXGIFactory1), (void**)&DXGIFactory); // Use the first adapter IDXGIAdapter1 *Adapter; hr = DXGIFactory->EnumAdapters1(0, &Adapter); DXGIFactory->Release(); //Create our Direct3D 11 Device and SwapChain////////////////////////////////////////////////////////////////////////// hr = D3D11CreateDeviceAndSwapChain(Adapter, D3D_DRIVER_TYPE_UNKNOWN, NULL, D3D11_CREATE_DEVICE_BGRA_SUPPORT, NULL, NULL, D3D11_SDK_VERSION, &swapChainDesc, &SwapChain, &d3d11Device, NULL, &d3d11DevCon); //Initialize Direct2D, Direct3D 10.1, DirectWrite InitD2D_D3D101_DWrite(Adapter); //Release the Adapter interface Adapter->Release(); //Create our BackBuffer and Render Target hr = SwapChain->GetBuffer( 0, __uuidof( ID3D11Texture2D ), (void**)&BackBuffer11 ); hr = d3d11Device->CreateRenderTargetView( BackBuffer11, NULL, &renderTargetView ); //Describe our Depth/Stencil Buffer D3D11_TEXTURE2D_DESC depthStencilDesc; depthStencilDesc.Width = Width; depthStencilDesc.Height = Height; depthStencilDesc.MipLevels = 1; depthStencilDesc.ArraySize = 1; depthStencilDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilDesc.SampleDesc.Count = 1; depthStencilDesc.SampleDesc.Quality = 0; depthStencilDesc.Usage = D3D11_USAGE_DEFAULT; depthStencilDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL; depthStencilDesc.CPUAccessFlags = 0; depthStencilDesc.MiscFlags = 0; //Create the Depth/Stencil View d3d11Device->CreateTexture2D(&depthStencilDesc, NULL, &depthStencilBuffer); d3d11Device->CreateDepthStencilView(depthStencilBuffer, NULL, &depthStencilView); return true; } bool InitD2D_D3D101_DWrite(IDXGIAdapter1 *Adapter) { //Create our Direc3D 10.1 Device/////////////////////////////////////////////////////////////////////////////////////// hr = D3D10CreateDevice1(Adapter, D3D10_DRIVER_TYPE_HARDWARE, NULL,D3D10_CREATE_DEVICE_BGRA_SUPPORT, D3D10_FEATURE_LEVEL_9_3, D3D10_1_SDK_VERSION, &d3d101Device ); //Create Shared Texture that Direct3D 10.1 will render on////////////////////////////////////////////////////////////// D3D11_TEXTURE2D_DESC sharedTexDesc; ZeroMemory(&sharedTexDesc, sizeof(sharedTexDesc)); sharedTexDesc.Width = Width; sharedTexDesc.Height = Height; sharedTexDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; sharedTexDesc.MipLevels = 1; sharedTexDesc.ArraySize = 1; sharedTexDesc.SampleDesc.Count = 1; sharedTexDesc.Usage = D3D11_USAGE_DEFAULT; sharedTexDesc.BindFlags = D3D11_BIND_SHADER_RESOURCE | D3D11_BIND_RENDER_TARGET; sharedTexDesc.MiscFlags = D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX; hr = d3d11Device->CreateTexture2D(&sharedTexDesc, NULL, &sharedTex11); // Get the keyed mutex for the shared texture (for D3D11)/////////////////////////////////////////////////////////////// hr = sharedTex11->QueryInterface(__uuidof(IDXGIKeyedMutex), (void**)&keyedMutex11); // Get the shared handle needed to open the shared texture in D3D10.1/////////////////////////////////////////////////// IDXGIResource *sharedResource10; HANDLE sharedHandle10; hr = sharedTex11->QueryInterface(__uuidof(IDXGIResource), (void**)&sharedResource10); hr = sharedResource10->GetSharedHandle(&sharedHandle10); sharedResource10->Release(); // Open the surface for the shared texture in D3D10.1/////////////////////////////////////////////////////////////////// IDXGISurface1 *sharedSurface10; hr = d3d101Device->OpenSharedResource(sharedHandle10, __uuidof(IDXGISurface1), (void**)(&sharedSurface10)); hr = sharedSurface10->QueryInterface(__uuidof(IDXGIKeyedMutex), (void**)&keyedMutex10); // Create D2D factory/////////////////////////////////////////////////////////////////////////////////////////////////// ID2D1Factory *D2DFactory; hr = D2D1CreateFactory(D2D1_FACTORY_TYPE_SINGLE_THREADED, __uuidof(ID2D1Factory), (void**)&D2DFactory); D2D1_RENDER_TARGET_PROPERTIES renderTargetProperties; ZeroMemory(&renderTargetProperties, sizeof(renderTargetProperties)); renderTargetProperties.type = D2D1_RENDER_TARGET_TYPE_HARDWARE; renderTargetProperties.pixelFormat = D2D1::PixelFormat(DXGI_FORMAT_UNKNOWN, D2D1_ALPHA_MODE_PREMULTIPLIED); hr = D2DFactory->CreateDxgiSurfaceRenderTarget(sharedSurface10, &renderTargetProperties, &D2DRenderTarget); sharedSurface10->Release(); D2DFactory->Release(); // Create a solid color brush to draw something with hr = D2DRenderTarget->CreateSolidColorBrush(D2D1::ColorF(1.0f, 1.0f, 1.0f, 1.0f), &Brush); //DirectWrite/////////////////////////////////////////////////////////////////////////////////////////////////////////// hr = DWriteCreateFactory(DWRITE_FACTORY_TYPE_SHARED, __uuidof(IDWriteFactory), reinterpret_cast<IUnknown**>(&DWriteFactory)); hr = DWriteFactory->CreateTextFormat( L"Script", NULL, DWRITE_FONT_WEIGHT_REGULAR, DWRITE_FONT_STYLE_NORMAL, DWRITE_FONT_STRETCH_NORMAL, 24.0f, L"en-us", &TextFormat ); hr = TextFormat->SetTextAlignment(DWRITE_TEXT_ALIGNMENT_LEADING); hr = TextFormat->SetParagraphAlignment(DWRITE_PARAGRAPH_ALIGNMENT_NEAR); d3d101Device->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_POINTLIST); return true; } void CleanUp() { //Release the COM Objects we created SwapChain->Release(); d3d11Device->Release(); d3d11DevCon->Release(); renderTargetView->Release(); squareVertBuffer->Release(); squareIndexBuffer->Release(); VS->Release(); PS->Release(); VS_Buffer->Release(); PS_Buffer->Release(); vertLayout->Release(); depthStencilView->Release(); depthStencilBuffer->Release(); cbPerObjectBuffer->Release(); Transparency->Release(); CCWcullMode->Release(); CWcullMode->Release(); d3d101Device->Release(); keyedMutex11->Release(); keyedMutex10->Release(); D2DRenderTarget->Release(); Brush->Release(); BackBuffer11->Release(); sharedTex11->Release(); DWriteFactory->Release(); TextFormat->Release(); d2dTexture->Release(); cbPerFrameBuffer->Release(); } void InitD2DScreenTexture() { //Create the vertex buffer Vertex v[] = { // Front Face Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 1.0f,-1.0f, -1.0f, -1.0f), Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f,-1.0f, 1.0f, -1.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f), Vertex( 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f), }; DWORD indices[] = { // Front Face 0, 1, 2, 0, 2, 3, }; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * 2 * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = indices; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &d2dIndexBuffer); D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * 4; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = v; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &d2dVertBuffer); //Create A shader resource view from the texture D2D will render to, //So we can use it to texture a square which overlays our scene d3d11Device->CreateShaderResourceView(sharedTex11, NULL, &d2dTexture); } bool InitScene() { InitD2DScreenTexture(); //Compile Shaders from shader file hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "VS", "vs_4_0", 0, 0, 0, &VS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "PS", "ps_4_0", 0, 0, 0, &PS_Buffer, 0, 0); hr = D3DX11CompileFromFile(L"Effects.fx", 0, 0, "D2D_PS", "ps_4_0", 0, 0, 0, &D2D_PS_Buffer, 0, 0); //Create the Shader Objects hr = d3d11Device->CreateVertexShader(VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), NULL, &VS); hr = d3d11Device->CreatePixelShader(PS_Buffer->GetBufferPointer(), PS_Buffer->GetBufferSize(), NULL, &PS); hr = d3d11Device->CreatePixelShader(D2D_PS_Buffer->GetBufferPointer(), D2D_PS_Buffer->GetBufferSize(), NULL, &D2D_PS); //Set Vertex and Pixel Shaders d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); ///////////////**************new**************//////////////////// light.pos = XMFLOAT3(0.0f, 0.0f, 0.0f); light.range = 100.0f; light.att = XMFLOAT3(0.0f, 0.2f, 0.0f); light.ambient = XMFLOAT4(0.3f, 0.3f, 0.3f, 1.0f); light.diffuse = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f); ///////////////**************new**************//////////////////// //Create the vertex buffer Vertex v[] = { // Front Face Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 1.0f,-1.0f, -1.0f, -1.0f), Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f,-1.0f, 1.0f, -1.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f), Vertex( 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f), // Back Face Vertex(-1.0f, -1.0f, 1.0f, 1.0f, 1.0f,-1.0f, -1.0f, 1.0f), Vertex( 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 1.0f), Vertex( 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f), Vertex(-1.0f, 1.0f, 1.0f, 1.0f, 0.0f,-1.0f, 1.0f, 1.0f), // Top Face Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 1.0f,-1.0f, 1.0f, -1.0f), Vertex(-1.0f, 1.0f, 1.0f, 0.0f, 0.0f,-1.0f, 1.0f, 1.0f), Vertex( 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f), Vertex( 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f), // Bottom Face Vertex(-1.0f, -1.0f, -1.0f, 1.0f, 1.0f,-1.0f, -1.0f, -1.0f), Vertex( 1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f), Vertex( 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f), Vertex(-1.0f, -1.0f, 1.0f, 1.0f, 0.0f,-1.0f, -1.0f, 1.0f), // Left Face Vertex(-1.0f, -1.0f, 1.0f, 0.0f, 1.0f,-1.0f, -1.0f, 1.0f), Vertex(-1.0f, 1.0f, 1.0f, 0.0f, 0.0f,-1.0f, 1.0f, 1.0f), Vertex(-1.0f, 1.0f, -1.0f, 1.0f, 0.0f,-1.0f, 1.0f, -1.0f), Vertex(-1.0f, -1.0f, -1.0f, 1.0f, 1.0f,-1.0f, -1.0f, -1.0f), // Right Face Vertex( 1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f), Vertex( 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f), Vertex( 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f), Vertex( 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f), }; DWORD indices[] = { // Front Face 0, 1, 2, 0, 2, 3, // Back Face 4, 5, 6, 4, 6, 7, // Top Face 8, 9, 10, 8, 10, 11, // Bottom Face 12, 13, 14, 12, 14, 15, // Left Face 16, 17, 18, 16, 18, 19, // Right Face 20, 21, 22, 20, 22, 23 }; D3D11_BUFFER_DESC indexBufferDesc; ZeroMemory( &indexBufferDesc, sizeof(indexBufferDesc) ); indexBufferDesc.Usage = D3D11_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(DWORD) * 12 * 3; indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA iinitData; iinitData.pSysMem = indices; d3d11Device->CreateBuffer(&indexBufferDesc, &iinitData, &squareIndexBuffer); D3D11_BUFFER_DESC vertexBufferDesc; ZeroMemory( &vertexBufferDesc, sizeof(vertexBufferDesc) ); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.ByteWidth = sizeof( Vertex ) * 24; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; ZeroMemory( &vertexBufferData, sizeof(vertexBufferData) ); vertexBufferData.pSysMem = v; hr = d3d11Device->CreateBuffer( &vertexBufferDesc, &vertexBufferData, &squareVertBuffer); //Create the Input Layout hr = d3d11Device->CreateInputLayout( layout, numElements, VS_Buffer->GetBufferPointer(), VS_Buffer->GetBufferSize(), &vertLayout ); //Set the Input Layout d3d11DevCon->IASetInputLayout( vertLayout ); //Set Primitive Topology d3d11DevCon->IASetPrimitiveTopology( D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST ); //Create the Viewport D3D11_VIEWPORT viewport; ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT)); viewport.TopLeftX = 0; viewport.TopLeftY = 0; viewport.Width = Width; viewport.Height = Height; viewport.MinDepth = 0.0f; viewport.MaxDepth = 1.0f; //Set the Viewport d3d11DevCon->RSSetViewports(1, &viewport); //Create the buffer to send to the cbuffer in effect file D3D11_BUFFER_DESC cbbd; ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; cbbd.ByteWidth = sizeof(cbPerObject); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerObjectBuffer); //Create the buffer to send to the cbuffer per frame in effect file ZeroMemory(&cbbd, sizeof(D3D11_BUFFER_DESC)); cbbd.Usage = D3D11_USAGE_DEFAULT; cbbd.ByteWidth = sizeof(cbPerFrame); cbbd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbbd.CPUAccessFlags = 0; cbbd.MiscFlags = 0; hr = d3d11Device->CreateBuffer(&cbbd, NULL, &cbPerFrameBuffer); //Camera information camPosition = XMVectorSet( 0.0f, 3.0f, -8.0f, 0.0f ); camTarget = XMVectorSet( 0.0f, 0.0f, 0.0f, 0.0f ); camUp = XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ); //Set the View matrix camView = XMMatrixLookAtLH( camPosition, camTarget, camUp ); //Set the Projection matrix camProjection = XMMatrixPerspectiveFovLH( 0.4f*3.14f, (float)Width/Height, 1.0f, 1000.0f); D3D11_BLEND_DESC blendDesc; ZeroMemory( &blendDesc, sizeof(blendDesc) ); D3D11_RENDER_TARGET_BLEND_DESC rtbd; ZeroMemory( &rtbd, sizeof(rtbd) ); rtbd.BlendEnable = true; rtbd.SrcBlend = D3D11_BLEND_SRC_COLOR; rtbd.DestBlend = D3D11_BLEND_INV_SRC_ALPHA; rtbd.BlendOp = D3D11_BLEND_OP_ADD; rtbd.SrcBlendAlpha = D3D11_BLEND_ONE; rtbd.DestBlendAlpha = D3D11_BLEND_ZERO; rtbd.BlendOpAlpha = D3D11_BLEND_OP_ADD; rtbd.RenderTargetWriteMask = D3D10_COLOR_WRITE_ENABLE_ALL; blendDesc.AlphaToCoverageEnable = false; blendDesc.RenderTarget[0] = rtbd; hr = D3DX11CreateShaderResourceViewFromFile( d3d11Device, L"braynzar.jpg", NULL, NULL, &CubesTexture, NULL ); // Describe the Sample State D3D11_SAMPLER_DESC sampDesc; ZeroMemory( &sampDesc, sizeof(sampDesc) ); sampDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; sampDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP; sampDesc.ComparisonFunc = D3D11_COMPARISON_NEVER; sampDesc.MinLOD = 0; sampDesc.MaxLOD = D3D11_FLOAT32_MAX; //Create the Sample State hr = d3d11Device->CreateSamplerState( &sampDesc, &CubesTexSamplerState ); d3d11Device->CreateBlendState(&blendDesc, &Transparency); D3D11_RASTERIZER_DESC cmdesc; ZeroMemory(&cmdesc, sizeof(D3D11_RASTERIZER_DESC)); cmdesc.FillMode = D3D11_FILL_SOLID; cmdesc.CullMode = D3D11_CULL_BACK; cmdesc.FrontCounterClockwise = true; hr = d3d11Device->CreateRasterizerState(&cmdesc, &CCWcullMode); cmdesc.FrontCounterClockwise = false; hr = d3d11Device->CreateRasterizerState(&cmdesc, &CWcullMode); return true; } void StartTimer() { LARGE_INTEGER frequencyCount; QueryPerformanceFrequency(&frequencyCount); countsPerSecond = double(frequencyCount.QuadPart); QueryPerformanceCounter(&frequencyCount); CounterStart = frequencyCount.QuadPart; } double GetTime() { LARGE_INTEGER currentTime; QueryPerformanceCounter(¤tTime); return double(currentTime.QuadPart-CounterStart)/countsPerSecond; } double GetFrameTime() { LARGE_INTEGER currentTime; __int64 tickCount; QueryPerformanceCounter(¤tTime); tickCount = currentTime.QuadPart-frameTimeOld; frameTimeOld = currentTime.QuadPart; if(tickCount < 0.0f) tickCount = 0.0f; return float(tickCount)/countsPerSecond; } void UpdateScene(double time) { //Keep the cubes rotating rot += 1.0f * time; if(rot > 6.28f) rot = 0.0f; //Reset cube1World cube1World = XMMatrixIdentity(); //Define cube1's world space matrix XMVECTOR rotaxis = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f); Rotation = XMMatrixRotationAxis( rotaxis, rot); Translation = XMMatrixTranslation( 0.0f, 0.0f, 4.0f ); //Set cube1's world space using the transformations cube1World = Translation * Rotation; ///////////////**************new**************//////////////////// //Reset Lights Position XMVECTOR lightVector = XMVectorSet( 0.0f, 0.0f, 0.0f, 0.0f ); lightVector = XMVector3TransformCoord(lightVector,cube1World); light.pos.x = XMVectorGetX(lightVector); light.pos.y = XMVectorGetY(lightVector); light.pos.z = XMVectorGetZ(lightVector); ///////////////**************new**************//////////////////// //Reset cube2World cube2World = XMMatrixIdentity(); //Define cube2's world space matrix Rotation = XMMatrixRotationAxis( rotaxis, -rot); Scale = XMMatrixScaling( 1.3f, 1.3f, 1.3f ); //Set cube2's world space matrix cube2World = Rotation * Scale; } void RenderText(std::wstring text, int inInt) { //Release the D3D 11 Device keyedMutex11->ReleaseSync(0); //Use D3D10.1 device keyedMutex10->AcquireSync(0, 5); //Draw D2D content D2DRenderTarget->BeginDraw(); //Clear D2D Background D2DRenderTarget->Clear(D2D1::ColorF(0.0f, 0.0f, 0.0f, 0.0f)); //Create our string std::wostringstream printString; printString << text << inInt; printText = printString.str(); //Set the Font Color D2D1_COLOR_F FontColor = D2D1::ColorF(1.0f, 1.0f, 1.0f, 1.0f); //Set the brush color D2D will use to draw with Brush->SetColor(FontColor); //Create the D2D Render Area D2D1_RECT_F layoutRect = D2D1::RectF(0, 0, Width, Height); //Draw the Text D2DRenderTarget->DrawText( printText.c_str(), wcslen(printText.c_str()), TextFormat, layoutRect, Brush ); D2DRenderTarget->EndDraw(); //Release the D3D10.1 Device keyedMutex10->ReleaseSync(1); //Use the D3D11 Device keyedMutex11->AcquireSync(1, 5); //Use the shader resource representing the direct2d render target //to texture a square which is rendered in screen space so it //overlays on top of our entire scene. We use alpha blending so //that the entire background of the D2D render target is "invisible", //And only the stuff we draw with D2D will be visible (the text) //Set the blend state for D2D render target texture objects d3d11DevCon->OMSetBlendState(Transparency, NULL, 0xffffffff); //Set d2d's pixel shader so lighting calculations are not done d3d11DevCon->PSSetShader(D2D_PS, 0, 0); //Set the d2d Index buffer d3d11DevCon->IASetIndexBuffer( d2dIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the d2d vertex buffer UINT stride = sizeof( Vertex ); UINT offset = 0; d3d11DevCon->IASetVertexBuffers( 0, 1, &d2dVertBuffer, &stride, &offset ); WVP = XMMatrixIdentity(); cbPerObj.World = XMMatrixTranspose(WVP); cbPerObj.WVP = XMMatrixTranspose(WVP); d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &d2dTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(CWcullMode); //Draw the second cube d3d11DevCon->DrawIndexed( 6, 0, 0 ); } void DrawScene() { //Clear our render target and depth/stencil view float bgColor[4] = {(0.0f, 0.0f, 0.0f, 0.0f)}; d3d11DevCon->ClearRenderTargetView(renderTargetView, bgColor); d3d11DevCon->ClearDepthStencilView(depthStencilView, D3D11_CLEAR_DEPTH|D3D11_CLEAR_STENCIL, 1.0f, 0); constbuffPerFrame.light = light; d3d11DevCon->UpdateSubresource( cbPerFrameBuffer, 0, NULL, &constbuffPerFrame, 0, 0 ); d3d11DevCon->PSSetConstantBuffers(0, 1, &cbPerFrameBuffer); //Reset Vertex and Pixel Shaders d3d11DevCon->VSSetShader(VS, 0, 0); d3d11DevCon->PSSetShader(PS, 0, 0); //Set our Render Target d3d11DevCon->OMSetRenderTargets( 1, &renderTargetView, depthStencilView ); //Set the default blend state (no blending) for opaque objects d3d11DevCon->OMSetBlendState(0, 0, 0xffffffff); //Set the cubes index buffer d3d11DevCon->IASetIndexBuffer( squareIndexBuffer, DXGI_FORMAT_R32_UINT, 0); //Set the cubes vertex buffer UINT stride = sizeof( Vertex ); UINT offset = 0; d3d11DevCon->IASetVertexBuffers( 0, 1, &squareVertBuffer, &stride, &offset ); //Set the WVP matrix and send it to the constant buffer in effect file WVP = cube1World * camView * camProjection; cbPerObj.World = XMMatrixTranspose(cube1World); cbPerObj.WVP = XMMatrixTranspose(WVP); d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &CubesTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(CWcullMode); d3d11DevCon->DrawIndexed( 36, 0, 0 ); WVP = cube2World * camView * camProjection; cbPerObj.World = XMMatrixTranspose(cube2World); cbPerObj.WVP = XMMatrixTranspose(WVP); d3d11DevCon->UpdateSubresource( cbPerObjectBuffer, 0, NULL, &cbPerObj, 0, 0 ); d3d11DevCon->VSSetConstantBuffers( 0, 1, &cbPerObjectBuffer ); d3d11DevCon->PSSetShaderResources( 0, 1, &CubesTexture ); d3d11DevCon->PSSetSamplers( 0, 1, &CubesTexSamplerState ); d3d11DevCon->RSSetState(CWcullMode); d3d11DevCon->DrawIndexed( 36, 0, 0 ); RenderText(L"FPS: ", fps); //Present the backbuffer to the screen SwapChain->Present(0, 0); } int messageloop(){ MSG msg; ZeroMemory(&msg, sizeof(MSG)); while(true) { BOOL PeekMessageL( LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT wMsgFilterMax, UINT wRemoveMsg ); if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { if (msg.message == WM_QUIT) break; TranslateMessage(&msg); DispatchMessage(&msg); } else{ // run game code frameCount++; if(GetTime() > 1.0f) { fps = frameCount; frameCount = 0; StartTimer(); } frameTime = GetFrameTime(); UpdateScene(frameTime); DrawScene(); } } return msg.wParam; } LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch( msg ) { case WM_KEYDOWN: if( wParam == VK_ESCAPE ){ DestroyWindow(hwnd); } return 0; case WM_DESTROY: PostQuitMessage(0); return 0; } return DefWindowProc(hwnd, msg, wParam, lParam); } Effects.fx: struct Light { float3 dir; float3 pos; float range; float3 att; float4 ambient; float4 diffuse; }; cbuffer cbPerFrame { Light light; }; cbuffer cbPerObject { float4x4 WVP; float4x4 World; }; Texture2D ObjTexture; SamplerState ObjSamplerState; struct VS_OUTPUT { float4 Pos : SV_POSITION; float4 worldPos : POSITION; float2 TexCoord : TEXCOORD; float3 normal : NORMAL; }; VS_OUTPUT VS(float4 inPos : POSITION, float2 inTexCoord : TEXCOORD, float3 normal : NORMAL) { VS_OUTPUT output; output.Pos = mul(inPos, WVP); output.worldPos = mul(inPos, World); output.normal = mul(normal, World); output.TexCoord = inTexCoord; return output; } float4 PS(VS_OUTPUT input) : SV_TARGET { input.normal = normalize(input.normal); float4 diffuse = ObjTexture.Sample( ObjSamplerState, input.TexCoord ); float3 finalColor = float3(0.0f, 0.0f, 0.0f); //Create the vector between light position and pixels position float3 lightToPixelVec = light.pos - input.worldPos; //Find the distance between the light pos and pixel pos float d = length(lightToPixelVec); //Create the ambient light float3 finalAmbient = diffuse * light.ambient; //If pixel is too far, return pixel color with ambient light if( d > light.range ) return float4(finalAmbient, diffuse.a); //Turn lightToPixelVec into a unit length vector describing //the pixels direction from the lights position lightToPixelVec /= d; //Calculate how much light the pixel gets by the angle //in which the light strikes the pixels surface float howMuchLight = dot(lightToPixelVec, input.normal); //If light is striking the front side of the pixel if( howMuchLight > 0.0f ) { //Add light to the finalColor of the pixel finalColor += howMuchLight * diffuse * light.diffuse; //Calculate Light's Falloff factor finalColor /= light.att[0] + (light.att[1] * d) + (light.att[2] * (d*d)); } //make sure the values are between 1 and 0, and add the ambient finalColor = saturate(finalColor + finalAmbient); //Return Final Color return float4(finalColor, diffuse.a); } float4 D2D_PS(VS_OUTPUT input) : SV_TARGET { input.normal = normalize(input.normal); float4 diffuse = ObjTexture.Sample( ObjSamplerState, input.TexCoord ); return diffuse; }